
 

STO-MP-HFM-334 15 - 1 

Optimizing Performance Based Training: Monitoring the Flow of 
Cognitive Load based on Psychophysiological Measurements in a Fighter 

Cockpit Simulator 
Maykel van Miltenburg 

1059 CM Amsterdam 
THE NETHERLANDS 

Maykel.van.Miltenburg@nlr.nl 

Jur Crijnen 
1059 CM Amsterdam 

THE NETHERLANDS 

Jur.Crijnen@nlr.nl 

ABSTRACT  
Current training of fighter pilots is, almost without exception, designed for a fixed number of hours and on a 
specific time schedule. Performance Based Training is a training concept aimed at optimizing training, 
preferably in a personalized way. It is about preventing training/performance gaps beforehand, instead of 
solving them afterwards. Effective personalized learning assumes an optimal level of difficulty in the 
learning task provided. Therefore, an optimum load model is developed capable of classifying a pilot’s 
cognitive load in real-time based on various cognitive load metrics. The study was set up to test 
electroencephalography (more specifically, the individual upper alpha band power and theta band power) 
as one of the cognitive load metrics of this model in a fighter cockpit environment. A total of four 
participants took part, all of whom were former F-16 pilots. Each of the participants performed three 
sessions with multiple runs. The cognitive load is expected to be higher during the first run (Retention Test) 
compared to the last run (Performance Test) within each session. While performance and subjective 
workload are respectively higher and lower during a Performance Test compared to a Retention Test, the 
cognitive load metric showed mixed results between both tests which could be attributed to high inter- and 
intra-individual differences. 

Keywords: Performance Based Training, cognitive load, electroencephalography, fighter cockpit simulator, 
retention interval, tactical intercept 

1.0 INTRODUCTION 

Current training of fighter pilots is, almost without exception, designed for a fixed number of hours in a 
specific time schedule for qualification training programs as well as annual training programs. Generally, 
deviations from the programs relate to organisational demands, less to individual pilot demands. 
Performance Based Training is a training concept aimed at optimizing training, preferably in a personalized 
way, such that relevant training events are offered at the correct time and with the correct resources. It is 
about preventing training/performance gaps, instead of solving them afterwards and can be used to aim for 
the highest personal standards, instead of ensuring the minimal standard. Performance Based Training 
requires advanced techniques for measuring and recording performance and behavior of both pilot and 
system. It also requires advanced analysis techniques. Both types of techniques are hardly used in practice 
for a variety of reasons. They require expertise that is lacking in the organisation, they take time to use, and 
they may influence the execution of the task (they are "intrusive"). We anticipate these limitations will 
disappear as technology advances in the next decade. 

In the search for optimal learning conditions, researchers from education sciences have developed the 
concept of personalized learning. Similar to the successful development of personalized medicine, 
personalized learning seeks to identify genetic, neural and behavioural predictors of individual differences in 
learning and aims to use predictors to help create optimal teaching paradigms [1]. Effective personalized 
learning assumes, at least, an optimal level of difficulty in the learning task provided. The optimal task 
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difficulty relates to a balance of performance and cognitive load (‘Cognitive Load Theory’) [2]. An adaptive 
level of task difficulty is required to maintain the balance while learning is progressing. Suboptimal task 
difficulty leads to ineffective training, e.g., presenting experts with a training suitable for novices for 
example has been found to adversely affect their learning progress [3]. The balance can be achieved faster by 
enhancing motivation [4]. These findings are consistent with Vygotsky’s Zone of Proximal Development for 
children [5] and the Flow concept of Csíkszentmihályi [6] as applied in game design [7]: the ‘flow channel’ 
between anxiety and boredom (see Figure 1). This latter concept stresses the importance of a bandwidth in 
which the task difficulty fluctuates between challenging and easy activities, while avoiding states of extreme 
frustration or boredom. Such progress may be stimulating not only for gaming, but for any type of activity, 
including learning as shown by Kiili [8]. 

Figure 1: Flow Channel based on Schell (2014). 

The optimal level of task difficulty and its related flow channel greatly differs between individuals, and 
therefore would be a promising candidate to incorporate in a personalized learning environment. However, 
the optimal level of task difficulty for a particular individual is also mostly unknown. It depends on a number 
of individual and environmental variables, and the subjective appraisal thereof, both at the cognitive (e.g., 
task performance, cognitive load) and the emotional (e.g., stress, anxiety, fatigue) levels, which are often 
inaccessible to consciousness. Currently, instructional designers, instructors, as well as game designers make 
assumptions about the optimal task difficulty for their audiences and try to adapt as needed. The relevance of 
using either performance measures as well as mental states is acknowledged but these measures often are 
inaccurate and subjective. Also, despite growing availability of a wide range of learning analytics techniques, 
these are hardly employed to deliver personalized training and they are mostly developed for post-hoc 
adaptation: providing feedback after an assignment or selecting the next learning task [9], not adapting the 
learning task during the task performance. However, selecting the optimal next learning task should be 
considered most important. Adapting the learning task in real-time should be no more than finetuning since 
too big adaptations are undesirable and will also not be feasible in practice.  

1.1 Measures from the brain 
Psychophysiological measures have been used in an attempt to provide objective measures for mental states 
such as cognitive load. They can be obtained fairly easily and noninvasively from the surface of the human 
body are characterized by sufficient individual variation [10] to warrant their use in personalized learning. 
Much is known about the physiological basis of most psychophysiological measures, as well as their relation 
to psychological states and processes, but an overall theoretical framework within the context of 
(personalized) learning is lacking. 

As learning and task difficulty are influenced by cognition as well as emotion, it is relevant to incorporate 
measures at both levels in personalized learning. In the present context, measures from the brain (i.e. 
electroencephalography; EEG) and the autonomic nervous system (i.e. electrocardiography; ECG) are most 
important, because they can be consistently related to behaviour. Measures from the brain mostly tap on 
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cognitive processes, whereas measures from the autonomic nervous system are mostly related to emotional 
states, although this distinction is by no means very sharp. In the EEG, we will focus on the bands most 
commonly associated with cognitive load, viz. theta and upper alpha. Reduced power in the (upper) alpha 
band and/or increased power in theta band covary with cognitive load in a variety of tasks [11, 12].  

1.2 Individual differences 
There are individual differences in EEG in either rest or task conditions. These are contributed, to a large 
extent, to age and genetic factors. Some researchers advice to identify individual peak frequencies for 
bandwidths [10], which varies over time within a participant (SD of 1 Hz), but certainly varies between 
participants (SD is 2.8 Hz). Not only does the magnitude of alpha power vary between individuals, the 
location of the alpha peak power varies as well, and therefore also the definition of the alpha sub-bands. In a 
healthy population of adults, the average individual alpha frequency (IAF) is usually thought to be around 10 
Hz with a standard-deviation of 1 Hz [13]. The definition of the sub-bands 8-10 and 10-12 Hz is based in this 
finding. However, a standard-deviation of 1 entails that 95% of the IAF across individuals lie within a 
confidence interval of 8 and 12 Hz even in a relatively homogeneous population of young adults. This 
suggests that the alpha sub-bands should also be personalized so that an individual with an IAF of, say 8.5 
Hz works with a low alpha band of 6.5-8.5 Hz and a high alpha band of 8.5-10.5 Hz. Individualized (i.e. 
IAF-based) alpha sub-bands have successfully been used before [14] but to our knowledge never in an 
(applied) training setting. 

1.3 Optimum Load Model 
Effective personalized training assumes, at least, an optimal level of difficulty in the task provided [2, 7]. 
Prior to the study described here, a first version of our optimum load model which is capable of classifying a 
pilot’s cognitive load in real-time while performing the Multi Attribute Task Battery (MATB-II) [15] based 
on electroencephalography (EEG) and heart rate (variability) signals was developed. The MATB-II consisted 
of five different levels with an increasing complexity. The resulting optimum load model consisted of three 
different layers: 1) simple rules and metrics including a multimodal approach in which different response 
systems (i.e. EEG and ECG) are analysed, 2) more complex criteria by using different classifiers (like k-
Nearest-Neighbours, Support Vector Machine or Random Forest) based on EEG data and 3) deep learning 
models using Convolutional Neural Network called EEGNet (also based on EEG data).  

The goal of this study is to test these three different layers of the optimum load model within a more realistic 
setting. The current paper describes a small scale experiment focussing on only the first layer (rules & 
metrics) of the optimum load model given constraints common for simulator training. Measurements from 
the brain (EEG) and autonomic nervous system (ECG) are collected on aggregated and individual level. 
However, only the EEG measurements will be analysed within current paper. 

1.4 Hypotheses 
The hypotheses are that the individual upper alpha band power will decrease with an increasing cognitive 
load [16] and that the theta band power will increase with an increasing cognitive load [17, 18]. In addition, 
the cognitive load is expected to be higher during the first run of a session compared to the last run of a 
session.  

2.0 APPROACH 

Participants were provided a total of three F-16 simulator sessions with varying retention times in between. 
included. Each session consisted multiple runs. The first run after a retention interval is called Retention Test 
(RT). The last run of the session is called Performance Test (PT). The first session consisted of multiple 
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Tactical Intercept (TI) runs with an increasing complexity. The second and third sessions differed from the 
first session in that they started and ended with a run of equal complexity. The pilots are scored for the PT 
and RT on performance criteria, which are discussed in Paragraph 2.4.  

2.1 Participants 
A total of four participants with a former position as F-16 pilot participated. They varied in age (37 – 50 
years), flight experience, and diversity in fighter pilot retirement ranging from five months to twelve years. 
Two out of four pilots still perform flights on a regular basis as airline pilot, however this is not expected to 
impact the performance as the skill researched within this paper has only limited overlap with civil flight 
operation skills.  

2.2 Experiment sessions 
The goal of the TI sessions is to train the participants, independent of their fighter pilot skills prior to the 
experiment, to be “current” on the single ship TI task. Within this task the fighter pilot is commanded to 
eliminate hostile aircraft while being assisted by fighter control. Although the environment is known to the 
participants, the single ship TI is a non-standard mission type as regular TI’s are performed in a multi ship 
formation. Since the relation between skill improved and cognitive load has our interest it is favorable to 
have no interreference from task dependent experience. Additionally, even the most skilled pilots will be 
able to improve themselves in executing this mission type due to its novelty. The single ship TI task 
therefore allows to take measurements. In each session the pilot is trained by means of multiple runs with 
different complexity. The level of complexity is determined by the amount, the formation, and the 
speed/altitude of the hostile aircraft. Within each session the complexity is increased and under supervision 
of a flight instructor the runs are debriefed to determine points of improvement. Before the start of first run, 
the pilots first familiarised with the setup of controls and cockpit layout. The experiment design is visualized 
in Figure 2. 

Throughout the runs, baseline and activity measurements are taken for the EEG. In each run, the baseline 
captures approximately two minutes of data ranging from ten seconds after the pilot is ‘released’ in the air 
until the fighter control announces the presence of hostile aircraft (“New Picture”). Activity measurements 
range from 40 seconds prior to the release of a missile from the participant to 20 seconds after. This 
timeframe is expected to indicate the highest amount of cognitive load because prior to weapon release the 
pilot has to achieve a radar lock on the enemy and afterwards has to maintain this lock for several seconds 
before performing a defensive maneuver to lower vulnerability towards the opponents’ shots. If activity 
timeframes overlap because multiple shots are released within the ‘prior to’ or ‘after’ missile release 
window, the measurements are stacked together in a larger timeframe. 
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Figure 2. Experiment Design 

2.2.1 Retention interval 

In between the TI sessions a varying interval time is assigned to the pilots. Retention intervals varied 
between 33 to 85 days. The retention interval in between session 1 and 2 is on average 48 days (SD = 18) 
and for session 2 to 3 62 days (SD = 15). Especially scheduling restrictions limited tighter and less dispersed 
intervals between the sessions. 

2.3 Procedure 
During the TI sessions the participants were first briefed on the tasks they were trained on. In between all test 
and training runs the scenario was debriefed to emphasise on the point of improvement for the upcoming 
runs. After each run the participant was asked to fill in the NASA TLX form. 

2.4 Measures 
During each run, EEG data is collected and simulator data is logged. After each run, subjective workload is 
assessed with the NASA-TLX. Retention time is logged based upon the total amount of days between the 
different sessions for each individual participant.  

After all sessions, the three PTs and two RTs for each pilot are graded according to their Flight Geometry, 
Weapon Management and Rules of Engagement/Communication skills. These criteria are fundamental to a 
successful completion of a (single ship) TI and are defined in cooperation with the grader, a former F-16 
pilot and weapon instructor. Flight Geometry yields the positioning of the aircraft with respect to the 
opponent. This is crucial to get the opportunity to attack the hostile aircraft and involves tactic skills. 
Accomplishment of radar lock, shooting and hitting the enemy by the participant is considered Weapon 
Management. Finally, Rules of Engagement/Communication comprises adherence to the combat rules, and 
indicates the level of competence in communicating with fighter control and acting on cues. The three 
criteria are graded by expert judgement according to a five-point Absolute Category rating scale which 
ranges from bad performance to excellent Performance. The expert is provided with a Common Operational 
Picture (COP) view and radio communication recording of the sessions. The displayed information involves 
the participants’ and enemies’ aircraft positioning, speed, and weapon release together with hit result. The 
PTs and RTs are provided in a random order and the expert is not aware about the run being a PT or RT 
while grading. The training runs in between the RT and PT are not graded as these are of a less demanding 
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levels which therefore could interfere with the data. 

For electrophysiological data acquisition, the EEG machine TSMi SAGA32 was used to record brain 
activity. The electrode selected for alpha rhythm was Pz and the one for theta Fz [19–21]. To research the 
hypotheses, alpha is investigated further: Besides using the total range of alpha, it is also subdivided into a 
lower (8-10Hz) and a higher alpha (10-12Hz). Furthermore, the individual peaks of the alpha bands are 
determined to locate the Individual Alpha Frequency (IAF). Additionally, this IAF is divided into a lower 
and higher IAF according to the peak. The range of lower IAF is defined as IAF-2 to IAF, whereas the range 
of higher IAF is defined as IAF to IAF+2. This resulted in six measures of alpha: total alpha, lower-alpha, 
higher-alpha, total IAF, lower IAF, and higher IAF. For each run, only the relative band power higher IAF 
(i.e. IAF to IAF+2Hz) and relative band power theta (i.e. 4-8Hz) are analysed. 

Since there are many individual differences in EEG in either rest or task conditions, band power will be 
reported by using the difference (i.e. delta) of the baseline and TI (i.e. TI minus baseline). We assume intra-
individual differences in EEG, so before each TI run there will be new a baseline. 

After each run, the NASA-TLX workload rating scale [22] was performed to take measurements of the 
participant’s subjective feelings of workload. The overall task load index is measured by averaging the 
results on these subscales (without any weighting factors). Research [23] have found in two studies that 
the NASA-TLX demonstrated validity and reliability.  

3.0 RESULTS & DISCUSSION 

Analysis showed promising results as was expected according the optimum load model. The hypotheses 
were that individual upper alpha band power decreased and theta band power increased with increasing 
cognitive load. Besides, a decreased cognitive load within RTs compared to PTs was expected as well. First, 
we will present and discuss the aggregated (i.e. all participants) and, second, the participant-dependent 
results. Sample size is too low to perform statistical analysis so it should be taken with caution and only as a 
trend analysis. More sessions are planned in the future. 

3.1 Aggregated Results 
Before discussing the results on the cognitive load based on EEG, we will start with the aggregated results on 
NASA-TLX and Performance Assessment.  

3.1.1 Subjective workload 

The NASA-TLX score in Figure 3 indicates the subjective workload perceived by the participants on each 
first and last run. On average, it can be seen that for the PTs (i.e. after training) the workload is graded lower 
than for the RTs (i.e. first run of the session after a retention interval). This is according to our expectations 
as the pilots are tasked to perform a relatively difficult exercise after the retention interval only with a short 
familiarization to prepare. 
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Figure 3. Result for each Test on the average (aggregated) NASA-TLX score. Error bars display 
the Standard Error. 

3.1.2 Performance 

The pilots’ performance of both the PTs and RTs are indicated in Figure 4. The bars represent the criterium 
dependent aggregated scores and the average for the three criteria is shown as a line. As expected, generally 
the performance drops after a retention interval, which is indicated by the two ‘dents’ in the line. Training 
runs appear to restore ones’ skills before they are tested during the PT. Noticeably is also the lower average 
performance increase during Session 3 compared to Session 2, as well as the overall peak performance (PT) 
in Session 3 remaining lower than Session 2. 

Figure 4. Result for each Test on the average (aggregated) Performance score. Error bars 
display the Standard Error. 
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3.1.3 Cognitive Load Metric: EEG 

First, an analysis was conducted to compare the total alpha activity of the resting states for each participant. 
Only for each run of Participant 4, there was no visual difference in upper alpha activity during eyes closed 
compared to eyes open. For now, Participant 4 is considered Brain-Computer Interface (BCI) illicit [24] and 
is removed from further EEG analysis and results. 

In Figure 5, the aggregated average performance and delta (i.e. Tactical Intercept minus Baseline) in relative 
band powers for individual upper alpha and theta are plotted during the PTs and RTs for each session. A 
positive delta means the power in TI was higher compared to the baseline within the same run. A negative 
delta means that the power in TI was lower compared to the baseline within the same run. For all runs, a 
positive delta in individual upper alpha band power and a negative delta in theta band power were expected 
as this would indicate increased cognitive load during the TI. Apart from both band powers in Session 1, the 
results confirm these hypotheses.  

In addition, when comparing PT and RT more closely, a lower cognitive load for PTs than for RTs is 
expected, as training aids in both increasing performance and lowering the cognitive load to execute their 
run. Apart from the theta band power in PTs of Session 2 and 3 (compared to RT within the same session) 
and the upper alpha band power in PT of Session 3 (compared to RT within the same session), this 
hypothesis can be confirmed. The delta in both band powers in PT of Session 2 is smaller when compared to 
its band power in RT within the same (and even, but only for upper alpha, the next) session(s) which 
indicates that cognitive load is decreasing. This could be induced by a constantly improving performance in 
combination with a lowering cognitive load in each consecutive run.  

However, this doesn’t appear to apply for all PTs and RTs. For the cases where the hypothesis cannot be 
confirmed, PT resulted in an increased cognitive load compared to the RT within the same session. As 
observed performance is lower during the RT the decreased workload (according to NASA-TLX) might 
reveal the reduced motivation and effort of the pilots to push the envelope of the TI and eliminate the hostile 
aircraft when this appears to be out of limits. The PTs’ increased delta in both band powers could illustrate 
the endeavour to push extra for scenario fulfilment. Interestingly, the results on NASA-TLX suggest the 
opposite. Therefore, a mismatch between actual (objective) cognitive load and perceived (subjective) 
cognitive load is identified. We need to look at the individual results to check this phenomenon. 
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Figure 5. Average delta (TI minus Baseline) in relative band power of theta and individual upper 
alpha (i.e. alpha_iaf_high) compared to performance (Aggregated). 

3.2 Participant dependent results 
Results from one participant are discussed to zoom in on the suitability of individual performance – 
cognitive load assessment.  

3.2.1 Performance and workload 

In Figure 6 the performance assessment and subjective workload (NASA-TLX) of one participant is 
visualised. Within this diagram a sawtooth-like pattern is identified for the combined Performance Score 
(average of Flight Geometry, Communication / Rules of Engagement, and Weapon Management scores). 
The sawtooth illustrates a performance drop after a retention interval, and restoring of these skills during 
training to an equivalent or a higher level than before. The perceived workload by the participant is 
decreasing within the sessions, indicated by a lower NASA TLX score for the PTs (with exception from the 
first PT) compared to the RTs. Therefore, it appears that increased performance is negatively related to 
perceived workload. This meets the expectations, training improves performance and lowers the (perceived) 
workload when an equivalent task is executed. 
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Figure 6. Individual performance (participant 1) with standard error compared to subjective 
workload (NASA TLX). 

3.2.2 Cognitive Load Metric: EEG 

In Figure 7, the performance and delta (i.e. Tactical Intercept minus Baseline) in relative band powers for 
individual (IAF-based) upper alpha and theta are plotted during the PTs and RTs for each session of one 
participant. When delta is positive that means the power in TI was higher compared to the baseline within 
the same run. When delta is negative that means that the power in TI was lower compared to the baseline 
within the same run. The results of Participant 1 are similar to the aggregated results. 

For all runs, a positive delta in individual upper alpha band power and a negative delta in theta band power 
were expected as this would indicate increased cognitive load during the TI. Apart from theta band power in 
PT Session 3, the results confirm these hypotheses. 

In addition, when comparing PT and RT more closely, a lower cognitive load for PTs than for RTs is 
expected, as training aids in both increasing performance and lowering the cognitive load to execute their 
run. Apart from the theta band power in PTs Session 1 and 2, this hypothesis can be confirmed. The delta in 
both band powers in PT of Session 2 is smaller when compared to its band power in RT within the next (and, 
but only for upper alpha, even the same and previous) session(s) which indicate(s) that cognitive load in PT 
is decreasing compared to RT. This could be induced by a constantly improving performance in combination 
with a lowering cognitive load in each consecutive run.  

However, this doesn’t appear to apply for all PTs and RTs. For the cases where the hypothesis cannot be 
confirmed, PT resulted in an increased cognitive load compared to the RT within the same session. As 
observed performance is lower during the RT the decreased workload (according to NASA-TLX) might 
reveal the reduced motivation and effort of the pilots to push the envelope of the TI and eliminate the hostile 
aircraft when this appears to be out of limits. The PTs’ increased delta in both band powers could illustrate 
the endeavour to push extra for scenario fulfilment. Interestingly, the results on NASA-TLX suggest the 
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opposite. Therefore, a mismatch between actual (objective) cognitive load and perceived (subjective) 
cognitive load is identified. We need to collect more data of more sessions and analyse different types of data 
(such as ECG) with the same (and new) participants to further research this phenomenon. 

Figure 7. Average delta (TI minus Baseline) in relative band power of theta and individual upper 
alpha (i.e. alpha_iaf_high) compared to performance (Participant 1). 

3.3 Lessons Learned 
The EEG data are difficult to interpret due to intra- and inter-individual differences. In general, an increased 
cognitive load is identified compared to its baseline. Delta of the band power during later sessions increased 
compared to the first sessions which illustrate the endeavour to push extra for scenario fulfilment. 

Overall (i.e. aggregated results), a small difference is observed in EEG between the RTs and PTs. Unlike 
expected, the cognitive load sometimes even suggest a more demanding PT compared to the RT. Therefore, 
a mismatch between actual (objective) cognitive load and perceived (subjective) cognitive load is identified. 
Pilot perform worse in RTs and find it more demanding (NASA TLX), however, their objective cognitive 
load appears to be often higher in the PT. Because of the nature of the scenario, this possibly suggest that the 
pilots are abandoning the run when they are aware that the hostile target is not within reach anymore. 

Looking at the training sessions few improvements should be implemented to make the PT and RT more 
equal for all fighter pilots. It is tempting to make the starting conditions more predefined, such as releasing 
the pilot always at the same location, altitude, and speed. This was deliberately not done to prevent the pilot 
to become too acquainted with the scenario. A more diverse set up scenarios could avoid this, however, 
using numerous scenarios again can lead to differences in comparing. The balance of establishing equal 
conditions while preventing participants from becoming to familiarised will always remain a challenge to 
scenario design for retention training. 
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4.0 FUTURE WORK 

Future work will focus more on using the retention performances and load measures to determine 
personalized retention schemes. Implementing personal schemes may raise scheduling difficulties in training 
organisations, which in turn require more advanced scheduling optimization methods [25] that need to be 
developed.  

Furthermore, we plan to develop optimum load model which automatically and in real-time adapts the task 
complexity during a simulator session. More specific, complexity can be adapted by adjusting computer 
generated forces. For example, when the computer generated forces appear to be too challenging or too 
comforting, then the complexity of the computer generated forces will be adjusted accordingly in real-time. 
As a result of this adaptive automation, these computer generated forces will behave and act within the flow 
channel (see Figure 1) of the individual. Specific activities are needed to deal with intra- and inter-individual 
differences of known and new participants. 

Also, the recorded heart rate (variability) data is to be analysed for the performed sessions, and will be used 
to substantiate the cognitive load data. This might reveal findings which explain the contradictory EEG and 
NASA TLX observations and give more insight in the intra- and inter-individual differences. 

With advanced automated schedules and adaptive training, further support is required for both instructor and 
pilot. We plan to develop a dashboard for the instructor and pilot to enhance insight in training progress and 
plans. This dashboard should present the pilot’s current and historical cognitive load based on 
(psycho)physiological data in an intuitive way so both (i.e. instructor and pilot) can use this information for 
their benefit. For example, the pilot (or trainee) could use this information to understand where he/she had a 
higher cognitive load during which events of a specific training. 

On the short term, more sessions are planned which should deal with the low sample size and expose 
whether PBT is ready to become an unambiguously and interpretable training philosophy for broadly 
applicable situations.  

5.0 CONCLUSIONS 

Overall, a relation between performance, subjective workload, and (objective) cognitive load is identified. 
The TI sessions appeared to be a suitable training setting to identify these relations and individual 
differences.  
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